Daily Science Journal (Jan. 31, 2008) — The High Resolution Stereo Camera (HRSC) on board ESA’s Mars Express has returned striking scenes of the Terby crater on Mars. The region is of great scientific interest as it holds information on the role of water in the history of the planet.

This false-colour image of Terby crater on Mars was derived from three HRSC colour channels and the nadir channel of the High Resolution Stereo Camera (HRSC) on board ESA's Mars Express orbiter. (Credit: ESA/DLR/FU Berlin (G. Neukum))

The image data was obtained on 13 April 2007 during orbit 4199, with a ground resolution of approximately 13 m/pixel. The Sun illuminates the scene from the west (from above in the image).

Terby crater lies at approximately 27° south and 74° east, at the northern edge of the Hellas Planitia impact basin in the southern hemisphere of Mars.

The crater, named after the Belgian astronomer Francois J. Terby (1846 – 1911), has a diameter of approximately 170 km. The scene shows a section of a second impact crater in the north.


Eye-catching finger-shaped plateaux extend in the north-south direction. They rise up to 2000 m above the surrounding terrain. The relatively old crater was filled with sediments in the past, which formed plateaux on erosion.

The flanks of the plateaux clearly exhibit layering of different-coloured material. Differences in colour usually indicate changes in the composition of the material and such layering is called ‘bedding’. Bedding structures are typical of sedimentary rock, which has been deposited either by wind or water. Different rock layers erode differently, forming terraces.

The valleys exhibit gullies, or channels cut in the ground by running liquid, mainly in the northern part of the image. These gullies and the rock-bedding structure indicate that the region has been affected by water.

The sediments in this region are interesting to study because they contain information on the role of water in the history of the planet. This is one of the reasons why Terby crater was originally short listed as one of 33 possible landing sites for NASA’s Mars Science Laboratory mission, planned for launch in 2009.

The colour scenes have been derived from the three HRSC colour channels and the nadir channel. The perspective views have been calculated from the digital terrain model derived from the HRSC stereo channels. The 3D anaglyph image was calculated from the nadir channel and one stereo channel, stereoscopic glasses are required for viewing.

Adapted from materials provided by European Space Agency.

----------------------------------------------------------------------------

Add On Article :

Europe's Eye On Mars: First Spectacular Results From Mars Express

ESA's Mars Express, successfully inserted into orbit around Mars on 25 December 2003, is about to reach its final operating orbit above the poles of the Red Planet. The scientific investigation has just started and the first results already look very promising, as this first close-up image shows.

Picture taken by the High Resolution Stereo Camera (HRSC) on board ESA’s Mars Express orbiter on 14 January 2004 under the responsibility of the Principal Investigator Prof. Gerhard Neukum. It was processed by the Institute for Planetary Research of the German Aerospace Centre (DLR), also involved in the development of the camera, and by the Institute of Geosciences of the Freie Universität Berlin.

Although the seven scientific instruments on board Mars Express are still undergoing a thorough calibration phase, they have already started collecting amazing results. The first high-resolution images and spectra of Mars have already been acquired.

This first spectacular stereoscopic colour picture was taken on 14 January 2004 by ESA's Mars Express satellite from 275 km above the surface of Mars by the High Resolution Stereo Camera (HRSC). This image is available on the ESA Portal at: http://mars.esa.int

The picture shows a portion of a 1700 km long and 65 km wide swath which was taken in south-north direction across the Grand Canyon of Mars (Valles Marineris). It is the first image of this size that shows the surface of Mars in high resolution (12 metres per pixel), in colour, and in 3D. The total area of the image on the Martian surface (top left corner) corresponds to 120 000 km². The lower part of the picture shows the same region in perspective view as if seen from a low-flying aircraft. This perspective view was generated on a computer from the original image data. One looks at a landscape which has been predominantly shaped by the erosional action of water. Millions of cubic kilometres of rock have been removed, and the surface features seen now such as mountain ranges, valleys, and mesas, have been formed.

The HRSC is just one of the instruments to have collected exciting data. To learn more about the very promising beginning to ESA's scientific exploration of Mars, media representatives are invited to attend a press conference on Friday, 23 January 2004, at 11:00 CET at ESA's Space Operations Centre in Darmstadt, Germany, and in video-conference with the other ESA centres.

There, under the auspices of ESA Council Chair, Germany's Minister for Education and Research, Mrs Edelgard Bulmahn, ESA's Director of the Scientific Programme, Prof. David Southwood and the Principal Investigators of all instruments on board Mars Express will present the first data and preliminary results.

Also a spectacular, three-dimensional video sequence, featuring famous landmarks on the surface of Mars 'as seen through European eyes' will be unveiled for the first time on Friday 23 January.

Adapted from materials provided by European Space Agency.



No comments: